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Fingerprint Liveness Detection using Multi-Orthant
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Abstract—Attacking fingerprint-based biometric systems by
presenting fake fingers is a serious threat for unattended devices.
In this paper, a simple but effective software-based approach
is proposed to defend the fake finger’s attack. We segment
the local texture feature space into multiple orthants by their
PCA hyperplanes. Through a specific coding algorithm, the
segmentation task can be performed with a small number of
convolutions. In this framework, the accuracy increases with the
dimension of the feature. Because of the high efficiency of our
algorithm, it is very convenient to generate a very high dimen-
sional feature. The experimental results show that our algorithm
remarkably outperforms the state-of-the-art approaches in the
Liveness Detection Competition 2011 (LivDet2011) benchmark.

Index Terms—fingerprint liveness detection, Multi-Orthant
Coding, high dimensional feature

I. INTRODUCTION

IN recent years, fingerprint verification systems for personal
identity recognition reached a high degree of accuracy.

Unfortunately, various of fake fingerprint molds has been
developed to attack the biometric authentication system [1].
Fake Fingers made by Play-Doh, gelatin, latex, wood glue,
and even the printed paper can pass some authentication sys-
tems. From a security perspective, fingerprint authentication
systems should have the ability to distinguish authentic or fake
finger samples. This requirement motivates researchers to find
effective methods to discriminate fake fingers from real ones.

A. Related Works

To solve the issue, one intuitive approach is to add more
sensors to the hardware of authentication system, such as tem-
perature, pulse oximetry, blood flow, electrical characteristics
[2], spectral characteristics [3], odor [4], heartbeat [5]. These
devices are more usually expensive as they require additional
hardware and may be not convenient to the users. For example,
one commercially fingerprint verification system with spoof
detection is from Lumidigm using a multi-spectral sensor:
spectral qualities of live skin, chromatic texture of skin, sub-
surface image of live skin, and blanching on contact [6]. This
method requires to purchase a specific scanners which are
not applicable to other optical fingerprint sensors. Moreover,
hardware systems may also be cheated unless they keep up
with the hackers’ new techniques.

These situations impel researchers to develop software-
based approaches, since they do not require additional hard-
ware, and they work with the images captured by existing
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sensors. Most existing fingerprint identify systems can eas-
ily adopt these software-based approaches by updating the
embedded software. When a new hacking technique appears,
the systems can be updated to discriminate new types of fake
fingers in a short time.

The software-based techniques are divided into two cato-
gories by their input data: dynamic frame sequences based
methods and static images based methods. Dynamic tech-
niques, such as skin deformation based ones [7], [8] and
elasticity patterns based ones [9], [10], extract features from
a series frames collected by sensors. The skin deformation
approaches [7], [8], requires the users to press on the sensor
by different pressure and rotate the pressure center. Since
the fake fingers made by rigid materials usually have less
distortion than the live ones, they designed various algorithms
to analyse the distortion. The elasticity-based approaches [9],
[10] are similar, utilizing the stereo shape and the elasticity of
real finger. In the initial frames, real fingers only have small
region touched on finger sensor, while the flat fake fingers
fully cover the sensor and their images have no difference
with later frames.

Static images based approaches utilizes less information
compared with dynamic ones. Up to now, no obviously
physical feature has been found to provide a clear standard
of judging the liveness of fingerprint. Some researchers did
preliminary analyses in using statistical patterns, such as power
spectrum [11], wavelet [12], [13], [14], curvelet [15] and
fusion of multiple static feature [16]. Perspiration pattern and
other noise in valley of fingers are widely considered to be
discriminative [17], [18], [19]. However, whether perspiration
exists or not is determined by the users, not the authentication
systems. Pores on the ridge are also an extensively used pattern
[16], [19], because the abraded fake fingers would not contain
the tiny details.

To get rid of the affection of various fingerprint curve di-
rections, some reseachers extract features along the fingerprint
curves to achieve rotation-invariance. Derakhshani et al. [17],
and Choi et al. [16] use a 1-D long signal on the ridges, and
find that the 11 to 33 FFT points have considerable ability of
discrimination. Tan et al. [19] add signal samples from valleys,
which denotes the perspiration and noise. Because they intent
to avoid the influence of the width, only the thinned skeletons
of ridges and valleys are utilized, and leave the rest information
from slopes apart.

Thanks to the Liveness Detection Competition [20], the
techniques of fingerprint liveness detection boom in recent
years. More researchers join in this area and various texture
analyse methods have been applied on the LivDet09 [21],
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Fig. 1. The procedure of the MOC pipeline. The feature is represented as the
histogram of the image at bottom right. The s(x) is defined in Equation (2).

LivDet11 [20], and LivDet13 [22]. Local binary pattern (LBP)
[23] and local phase quantization (LPQ) [24] have shown
outstanding ability of discrimination [25]. The two feature
descriptors have a framework, which consists of local 2D
filtering, feature binarization, and the arrangement of the
binary features. Different improvements are proposed for both
LBP and LPQ features. For instance, Jia et al. [26] combined
the LBP features from multiple scales (MSLBP) to obtain
more information, and Ghiani et al. [27] proposed a method
to learn a new filter bank from natural images (BSIF) by
Independent Component Analysis (ICA).

B. Contribution

Our main contribution lies in three aspects. First, we have
found that all the state-of-the-art algorithms share the same
coding scheme, which is named as Multi-Orthant Coding
(MOC) by us (Section II). With the MOC scheme, even
random parameters could lead to a satisfying accuracy. Second,
we analyse the property of MOC and propose to use Principle
Component Analyse (PCA) to learn filter banks for it (Section
III). Last, we proposed a series of techniques to promote
the performance of the MOC, such as high dimensional
strategy (Section IV), background filtering (Section V-C) and
normalization (Section V-D).

Moreover, we have discovered the non-ignorable role of the
background in fingerprint images. They also provide important
information for discriminating fake fingerprints from live
ones. The explanation and experiment details are described
in Section V-C.

II. MULTI-ORTHANT CODING (MOC)

Some of the previous algorithms, such as LBP [28] and its
extensions [23], [26], LPQ [24] and BSIF [27], share a same
coding scheme, and we call it Multi-Orthant Coding (MOC).

A. Coding Procedure

For a given filter bank that contains d filters fi (i = 1 · · · d)
with window size of s × s, the MOC code C(I) of a given
image I is calculated as
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Fig. 2. Top: the bi-linear interpolation for the calculation of the filters in
LBP8,1. Bottom: the filter bank of LBP8,1.

C(I) =
d∑
i=1

2i · s(I ∗ fi) (1)

where,

s(x) = { 1 if x ≥ 0
0 if x < 0

(2)

and the symbol ∗ denotes the convolution operator.
The most common feature of MOC is the histogram of

C(I). Since the codes in C(I) vary from 0 to 2d − 1, the
histogram features have totally 2d dimensions. The whole
coding procedure of MOC is shown with our learned filter
bank in Fig. 1.

B. Local Binary Pattern and Its Extend Versions

The original LBP (OLBP) operator was first proposed by
Ojala et al. [28]. It is well-known for its perfect performance in
illumination and rotation variant texture analysis. However, the
rotation-invariant version of LBP is inadequate to the minutia
classification task as experimental results [26] shown. In this
paper, we stop attempting to perform any rotation invariance
as well.

Since it is a fundamental algorithm in computer vision, too
many papers have described the mathematics procedure of it.
Here we will explain the algorithm from a new perspective
of filter bank. The filter bank of OLBP contains 8 filters with
size of 3×3 (Fig. 3), which are used to calculate the gradient
of the image in 8 different directions. The following steps are
just the same as the MOC. Finally, 256-dimensional histogram
features are extracted to describe the texture of images.

The OLBP is extended to different radius and various
amount of sampling points in [23], which is referred to as
LBPP,R. Different from the OLBP, LBPP,R is no longer
calculated on the integral grid positions. Instead, they are
computed on specified shapes such as circle or ellipse, which
means the signals are sampled at some floating points (Fig. 2
top left). The most widely used sampling strategy of LBPP,R
is bi-linear interpolation, which can be expressed as a linear
combination of the neighbourhood integral points around the
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MSLBP1[25]:

LPQ[23]:

BSIF[26]:

PCA:

OLBP[27]:

Fig. 3. Four different filter banks in the corresponding algorithms, where
OLBP is short for the original LBP [28]. Filters of MSLBP2 is not listed
here because they are just enlarged ones of the original LBP. The filters of
BSIF in this figure are a little different from the ones in [27] because we
calculate them with different natural images.

sampling points (Fig. 2 top left). The sampling procedure is
equivalent to a group of well-designed filters shown in Fig.
2 top right. Thus, the LBPP,R can also be concluded as a
special case of the MOC. By replacing the filters in the MOC
with the ones illustrated in Fig. 2 bottom, we will get the
feature histogram of LBPP,R in the same framework.

C. The Filter Banks of LPQ and BSIF

The Local Phase Quantization (LPQ) [24] is a blur-invariant
texture classification method. It is able to represent all spec-
trum characteristics of images in a very compact feature
representation. The eight filters are generated by short term
Fourier transform (STFT) in four directions and two phases.

Binarized statistical image feature (BSIF) [27] learns filters
from natural images using independent component analysis
(ICA). The size and number of the filters can be selected
manually. The authors suggested to choose 12 filters with
window size of 7× 7 to get a better performance.

The following steps of LPQ and BSIF are also the same
as MOC. The filters employed by original LBP [28], LBP8,1

[23], MSLBP [26], LPQ [24] and BSIF [27] are illustrated
with ours (PCA) in Fig. 3. Since the only difference of these
algorithms is the design of the filter banks, we regard these
algorithms as special cases of MOC.

D. Geometric Perspective

Note that the hyperplanes fTi x = 0 (i = 1 · · · d) cut the Rs2

into 2d orthants (Fig. 4 left), where the bold fi denotes the i-th
vectorized filter. Each code in C(I) ranges from 0 to 2d, which
is the serial number of the orthant that the corresponding local
image patch vector lies in. Simultaneously, each value in the
histogram feature denotes how many patch vectors are located
in each orthant (Fig. 4 right). This is why we name the coding
scheme as Multi-Orthant Coding (MOC).

However, even though we call it “orthant”, the hyperplanes
need not to be strictly orthogonal with each other. For instance,
the filter banks of LBP and its extended versions are non-
orthogonal, and this is main reason why the histogram of LBP
is always unbalanced and redundancy (Fig. 4).
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Fig. 4. Geometric explanation of Multi-Orthant Coding (MOC) scheme in R2.
Note that the histogram of LBP [28] is not balance, just as its 256-dimensional
illustration in Fig. 5.

III. LEARNING THE FILTER BANK

A. Algorithm

In the geometric perspective of MOC, the filters can be seen
as hyperplanes that separate local patches (Fig. ??(b)(c)(d))
apart. Intuitively, the local patch clusters apparently should
not be separated by the hyperplanes. Thus we directly penalty
the angles between the patches and the hyperplanes. For a
given filter fi, the optimal function is:

max
1

N

N∑
j=1

arcsin

∣∣∣∣∣ fTi x̂j

‖f̂i‖‖x̂i‖

∣∣∣∣∣ (3)

where,

f̂i = Null([f0, f1, · · · , fi−1])T fi

x̂j = Null([f0, f1, · · · , fj−1])Txj
(4)

where fi is the i-th vectorized filter, xj is the j-th normalized
image patch and Null(A) denotes an orthonormal basis matrix
for the null space of A. The procedure of the algorithm is
described as Algorithm 1.

Reshaping each column of F to square matrixes, the filters
can be obtained (Fig. 3).

B. Analysis

1) A Homogeneous Histogram is Necessary: Since the
direction of fingerprint curves cover all angles from 0 to
π, we argue that in the MOC architecture, the segmentation
criterion should guarantee that the given data distribution is
partitioned as equally as possible. As the feature histograms
show, some of the feature dimensions created by LBP and
BSIF are always zero, which means the coding scheme is
redundant. At the same time, a dimension with too high value
may mix two or more discriminative components, leading to
worse classification performance.

We simply use the entropy of feature histogram to quantize
the homogeneousness of the features. For a given feature
histogram h with dimension 2d, the entropy is calculated as:

E(h) =

2d∑
i=0

−hi log(hi + e) (5)
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Fig. 5. The feature histogram by different algorithms. We plot the square root of the probabilities to get a better visual effect. Note that a “good” MOC
algorithm ought to have a homogeneous histogram in theory, i.e. bigger entropy is better. (a) LBP8,1 [23] with 3 × 3 filter size. (b) LPQ [24] with 5 × 5
filter size. (c) MSLBP1 [26] with 9 × 9 filter size. (d) BSIF [27] with 7 × 7 filter size. (e) Random filters with 5 × 5 filter size. (f) Our proposed method
with 5× 5 filter size.

Algorithm 1 The Proposed Learning Algorithm.
Require:

The set of normalized fingerprint image patches, X;
Initiate learning rate α0 = 1, line search scale t = 1;
Randomly initialised matrix F ;
Initiate projection matrix H = I;

Ensure:
1: for i = 1 to d do
2: f̂i ← Hfi, x̂← Hx.
3: repeat
4: Normalize f̂i to ensure that ‖f̂i‖ = 1.

5: Calculate the loss L(f̂i; x̂) = 1
N

N∑
j=1

arcsin
∣∣∣f̂Ti x̂j∣∣∣

and the partial derivative ∂L
∂f̂i

= 1
N

N∑
j=1

sign(f̂T
i x̂j)√

1−(f̂T
i x̂j)2

x̂j

6: Line search for the learning rate α.
7: Apply the partial derivative: f̂i ← f̂i + α ∂L

∂f̂i

8: until ‖ ∂L
∂f̂i
‖ < 1e− 8

9: H ← Null(f̂i) ·H
10: fi ← HT f̂i
11: end for

where e is a small positive real number which is ultilized
to avoid the operation of log(0). The more homogeneous the
histogram h is, the bigger E(h) will be (Fig. 5).

2) Our Generated Filters are Stable Regardless of Scale:
As Fig. 6 illustrates, the filters of different scales are very
similar, with only some changes of the order. The filters of

4×4:

5×5:

6×6:

7×7:

8×8:

9×9:

10×10:

Fig. 6. The multi-scale filter pyramid generated by our learning algorithm.
Note that the filters are stable regardless of the scale.

higher scales are just enlarged ones of lower scales. This
property reflects that our algorithm is scale-invariant, even
though scale-invariant is not very necessary for fingerprint
analyse as experiment shows (Fig. 8). However, it also indi-
cates that when we connect the multi-scale features together,
the information redundance is a severe problem. Dimension
reduction is a indispensable part in our algorithm.

3) The Relationship Between the Filters from LPQ and
Ours: It can be discovered that some of our learned filters are
very similar to the ones generated by LPQ (Fig. 3). The feature
histogram calculated by LPQ is as homogeneous as ours (Fig.
5). The reason why LPQ is suitable for fingerprint analysis is
based on the assumption that the fingerprint images are just
blurred fingerprint skeleton curves. The blurred black skele-
tons and the white background construct the two polarized
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clusters in the joint distribution in Fig. ??.(b). However, our
algorithm can be easily extended to generate more filters while
the filter number of LPQ is only 8. Since high dimensionality
is one of the most important properties of our algorithm, the
scalability is a very important property in MOC framework.

4) The relationship Between MOC and Bag-of-Words
(BoW) Model: It can be noticed that the MOC is very similar
to the BoW model [29], whose features are usually represented
as the amounts of local features, such as image patches in this
work, that locate around some given center points. However,
the time complexity of extracting feature histogram used by
BoW are too high for embedded systems. Suppose that the
amount of the clusters is N , the time complexity of k-means
or GMM at testing time is Θ(N), which means N times of
convolution. In practice, we need at least hundred of clusters
to get an acceptable performance. Meanwhile, the MOC,
which is also a clustering algorithm, has a time complexity
of Θ(log2N). In our method, we put the local patches into
4096 codes with only 12 times of convolution.

IV. HIGH DIMENSIONAL STRATEGY

As we mentioned in Section III, most of the algorithms can-
not provide homogeneous histograms. In the LBP framework,
researchers raised up a merging strategy called “uniform”
[23]. By combining the tiny components of the LBP feature
together as a new one, they fix the histograms to endure more
noises. Jia et al. [26] simply select the largest 1/4 patterns in
the histogram to ignore the minutiae. None of the previous
algorithms present a way to split the large components into
small ones. Note that nearly all classifiers are able to find
the discriminative linear combination of the features, while
almost none of them could extract the latent components from
only one dimension. Inspired by this property, we attempt to
separate the feature space into more parts, i.e. to generate
higher dimensional features.

High dimension strategy has been experimented to be effec-
tive in face recognition [30], [31]. It is noteworthy that most
of the features used by Chen et al. [30], such as LBP [32],
LE [33] and Gabor [34], are all MOC features. In this paper,
we discover that high dimensional strategy is also critical to
high performance of MOC in the fingerprint liveness detection
task.

A. Dimension Increment

We extract higher dimensional features in the following two
ways.

1) More Filters: Since the MOC framework’s time com-
plexity is only Θ(log2N), it is very convenient to separate
the space into more parts. In another words, by adding
filters into the framework, the feature dimension will increase
exponentially. In our learning algorithm, adding filters can be
applied simply by changing the filter count d and training a
few more iterations.

2) More Scales: Besides extracting high dimensional fea-
tures, multiple scale is a widely-used technique to utilize the
information from different resolutions. Compared to the hand-
crafted LBP and LPQ, our filters can change its size arbitrarily.

So we can densely extract features from scale 3×3 to 10×10.
Note that due to the zero-mean constraint (Equation 4), 3× 3
patches only have 8 available principle components (filters). In
other scales, we select 12 filters corresponding to the biggest
12 singular values to generate 4096 dimensional features.

B. Dimension Reduction

The over-split feature is apparently redundancy and noisy.
Dimension reduction is necessary to filter the noise out and
to learn a more compact feature. PCA is also competent for
this job. The principle components that are corresponding to
the highest correlations accommodate most of the information.
Meanwhile, the noises have much lower correlations compared
with the useful signals. They will be restrained by selecting
the dominating directions.

Compressing the high dimensional combined feature direct-
ly is too expensive for a embedded system. Since features from
different scales are calculated separately, we execute the PCA
dimension reduction algorithm in each scale respectively. Then
the lower dimensional features are connected and compressed
again to eliminate the information redundancy of neighbour
scales.

V. EXPERIMENT

A. Database

Our algorithm is compared with previous approaches on the
four datasets from the Second International Fingerprint Live-
ness Detection Competition (LivDet2011 [20]). Each dataset
contains 2000 live fingerprint images and 2000 fake ones
acquired by the following electronic sensors: (i) Biometrika
FX2000, (ii) Digital Persona, (iii) ItalData ET10 and (iv)
Sagem MSO300. The fake fingerprints are made by materials
of ecoflex , gelatine, latex, silicone and wood glue, for each
material is used to generate 400 fake fingerprint. According
to the LivDet2011 protocol, the datasets are divided into two
parts equally, one for training and another for testing. All
the models of various algorithms are trained in the training
sets and the performances are obtained by applying the same
models to the testing sets.

We do not choose the datasets of LivDet2013 [22] because
most of the algorithms get very high performances on the
first two datasets, Biometrika and Italdata. When the accuracy
is generally above 95%, the performance of the models is
mainly depended on the parameters and noises, regardless
of the algorithms. On the Crossmatch dataset, nearly all the
approaches, as well as ours, failed to give a satisfied result
(no more than 50%). Because of the above reasons, we finally
give up experimenting on the LivDet2013 database.

The performance of the approaches are estimated simply
by the misclassification rate in the testing sets. In a real-world
system, the misclassification risk of live or spoof fingerprints
may be different. For instance, the users will feel bored when
their real fingers are mistaken as spoof ones frequently. A
developer may tend to raise up the misclassification risk of real
fingers to improve the user experience. In contrary, a highly
secret unit must increase the empirical risk of mistaking spoof
fingerprints as real ones. For these reason, we also compare
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the performance of different approaches by ROC curves. By
fixing the false positive rate, developers can customize the
system for different application scenarios.

To make our results more persuasive, we have implemented
all the MOC algorithms mentioned above, such as LBP [28],
LPQ [24], MSLBP1 [26] and BSIF [27]. Since the perfor-
mance of the non-MOC algorithms are much worse than the
MOC ones [26], [35], they are not taken into comparison.

B. Parameter Determination

We choose the support vector machine (SVM) with radial
basis function kernel as our classifier. 10-fold cross validation
is used to find the most satisfied dimension number of the final
feature, and the parameters of the classifier. It is worthy to note
that on all the datasets from LivDet2011, every 5 fingerprint
images are collected from the same live or spoof finger. When
we execute the 10-fold cross validation in usual way, the
result is not reliable because it may be affected by the same
direction map of the same finger. Instead of the totally random
selection strategy, we divide the training sets into small groups
of 5 fingerprint images generated from the same finger, and
randomly select a subset of groups as test data.

When the accuracies of cross validation are the same with
different parameters, we propose a simple method to determine
which parameter is the best one. Note that if the confidence
coefficient of a test sample in cross validation is close to 0,
another sample that is similar to it will be possibly judged to
another side. Suppose the confidence coefficient of a sample
s is T (s), then the decision variable D is calculated as:

D =
∑
s

(0.1− T (s))2 · 1{T (s) < 0.1} (6)

where 1{·} represents a characteristic function when with
1{true} = 1, and 1{false} = 0.

Besides determination the dimension number of the final
feature and the parameters of the classifier by cross validation,
there are two hyper-parameters, filter count and preserved
dimension number of every single scale, that should be set
empirically.

1) Filter Number: We shows the accuracies of various
dimensions in Fig. 7. It is illustrated that the performance
increases as the dimension explosively grows. However, when
the dimension increase to 213, the accuracies increase slightly
or even decline. This is because there are only about 100,000
pixels in one fingerprint image. A 213 dimensional feature
means that only 10 codes contribute to each dimension in
average. A weak noise with only a few outliers in one
dimension will notably deteriorate the feature. Moreover, it
is too huge to invoke a dimension reduction algorithm or a
classifier on 213 ∼ 215 dimensional features. Finally, we fix
the filter number to 8 for scale 3 × 3 and 12 for scale 4 × 4
to 10× 10.

2) Preserved Dimension Number of Single Scale: The
effect of different number of dimensions after reduction in
Biometrika dataset is illustrated in Fig. 8 as an example. It can
be concluded that the potential dimension (threshold that the
accuracy stop rising) increases with the scale, because features
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extracted from high scale tend to contain more information.
The average accuracies of all filter scales from 4× 4 to 10×
10 with different number of preserved dimension in the four
datasets are illustrated in Fig. 9. According to Fig. 8 & 9, we
fix the number of dimension after reduction in every single
scale to 400 for all datasets.

C. Background Filtering

In a fingerprint image, fingerprint textures always do not
cover all area of the image. Intuitively, the background should
be wiped out, i.e., the features should be extracted in the region
of fingerprint texture only. However, as we experimented,
the accuracies decrease when we use a mask to filter the
background out. We design an experiment to analysis the
role of the background textures. The histogram features are
computed on background only, fingerprint only and the whole
image, respectively. The results are shown in Table I. Note
that we only display the accuracies with scale 5× 5 for rough
demonstration.

TABLE I
EXPERIMENT RESULTS OF BACKGROUND FILTERING IN SCALE 5.

Region Biometrika Italdata Digital Sagem
All 5.95 10.15 2.9 5

No background 10.6 10.25 4.8 5
Background only 12.55 12.9 11.15 9.8

Soft background filtering 5.6 9.5 2.85 5

As the experimental results indicate, the performances of
features extracted in background only are extremely beyond
our expectation. The background implicitly accommodate
some information that cannot be distinguished by naked eyes.
When a real finger touches a optical fingerprint sensor, the
effect of shadow tends to be stronger. The curves of knuckle
may also be collected by the sensor (Fig. 10). Obviously, these
minutiae should not be ignored.

Nonetheless, the blank regions in the background still
should be erased out. We introduce a soft erasing method to
avoid ignoring the useful information. Suppose that the i-th
convolution result Ni = I ∗ fi, we define Ni(x, y) as inactive
one if

abs(Ni(x, y)) < εi (7)

where εi is a small positive number. If we guarantee that
||fi||2 = 1, εi can be set to 1, which means the threshold
is 1 gray level away from the hyperplane fTi x = 0.

If more than half of the convolution results at position (x, y)
are inactive, the arranged code CI(x, y) will be ignored in the
histogram calculating step.

This technique only works with images that have large
blank areas, such as some of the fingerprints collected by the
Biometrika sensor and all fingerprints from Italdata sensor.
When the fingerprints and background minutiae occupy most
of the area in the images, the affect of it will be too little to
be observed, such as fingerprints collected from Digital sensor
and Sagem sensor.

A live fingerprint

shadow

knuckle 

noise

Fig. 10. A live fingerprint image with three types of background components
labeled in the figure.
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Fig. 11. The effect of α for normalization. We only demonstrate the
performance of 5 × 5 filters as an example, because the time cost of cross
validation for 4096 dimensional features is too expensive.

D. Normalization

As a histogram, the feature is normalized with `1-norm. A
simple technique may improve the performance significantly
by powering the feature histogram h with a factor α:

h̃ = hα α ∈ (0, 1) (8)

In practice, the α can be obtained by cross-validation in
the training set or just set to 0.6 which is widely adapted in
all datasets (Fig. 11). The feature should be normalized with
`1-norm again after the α-normalization.

E. Performance of Random Filters

The most astonishing result is the performance of the ran-
dom filters (TABLE II). By replacing the filters with random
ones described in Section ??, we have obtained accuracies
no less than accuracies of LBP or LPQ. Furthermore, by
combining 10 different random filter banks, the accuracies are
very close or even beyond the state-of-the-art results got from
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Fig. 12. Accuracy as a function of the filter window size (filter scale) in
the four datasets. The performances of both original features and compressed
ones are demonstrated here.

BSIF and MSLBP1. These results reveal that it is the structure
of the MOC rather than the well-designed filter banks that
guarantees the high performance of MOC algorithms.

TABLE II
ACCURACY OF RANDOM PROJECTION AND BASELINES IN THE LIVDET 11

DATABASE

Algorithms Biometrika Italdata Digital Sagem
LBP [28] 89.05% 81.05% 89.45% 91.65%
LPQ [24] 85.35% 85.65% 88.05% 91.96%

MSLBP1 [26] 92.7% 85.2% 97.5% 94.7%
MSLBP2 [26] 89.4% 87.4% 93.3% 94.4%

BSIF [27] 93.2% 86.35% 96.5% 95.14%
RP minimum 89.5% 82.6% 93.1% 88.6%
RP maximum 92.6% 87.85% 95.15% 91.3%

RP average 91.32% 85.84% 94.23% 89.57%
RP combine 94.85% 89.1% 96.8% 93.6%

F. Performance of PCA Filters

Because of the high time and space cost of cross validation
for high dimensional features, we empirically fix the α to 0.6,
the number of preserved dimension to 400 for filter scale from
4× 4 to 10× 10 and 100 for filter scale 3× 3. These hyper-
parameters are not the best ones for each single scale, but they
are passable choices for all scales in all datasets (Fig. 8, 9,
11).

1) Single Scale: The accuracies of various single scales of
PCA filters is shown in Fig 12. As the figure illustrated, except
for the low accuracy of scale 3 (due to its low dimension),
there is no obvious regulation can be summed up with the
scale changes, i.e., it is difficult to select a best scale for all
the sensors.

2) Multiple Scales: The compressed features of all scales
are combined together to form 2900 dimensional features.
The features are further reduced to r dimensions, where r is

1Background filtering and normalization have been applied here.
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Fig. 13. The mean accuracy as a function of the final dimension in cross
validation. Note that the best dimensions, which are determined by the cross
validation accuracies and Equation (6), are marked by ’×’ in the figure. Best
view in color.

determined by cross validation in the training sets, together
with the parameters of the RBF-kernel SVM. We plot the
effect of final dimension for all datasets in Fig. 13. The best
dimensions calculated by Equation (6) are marked by ’×’ in
the figure.

The misclassification rates of various MOC algorithms are
listed in Table III, including the performance of the original
28928 dimensional features, compressed features, combined
features extracted by random filters. Note that “DR” means
dimension reduction in the table. The ROC curves of the four
datasets are shown in Fig 14, respectively.

By combining all the features from various scales together,
the final accuracy promotes a little bit except for the Digital
dataset (Table III). This is mainly because the accuracies
of different algorithms in Digital dataset are so high that
the accuracies are sensitive to the noise in the image and
the determination of the hyper-parameter. Due to the high
dimension of the original features in our algorithm, it is
difficult to apply a cross-validation algorithm to select the best
parameters in every scale.

As is shown in the table and figure, our algorithm outper-
forms other algorithms under MOC framework in all the four
datasets with a remarkable leap. However, when the system is
subject to misclassifying live fingerprints to fake ones, such as
only 1% false positive rate is acceptable, our algorithm is not
always the best choice. For Digital Persona sensor or Sagem
MSO300 sensor, when the false positive rate is set below 0.01,
the true positive rate of our algorithm is lower than the one
of BSIF [27] and MSLBP1 [26]. When the security level of a
system is very high that the tolerance of spoof fingers is within
a extremely low bound, our algorithm is a better choice for
all the four sensors.

G. Further Experiments

Now that we have got accuracies of more than 90% on all
the four sensors, with three of them beyond 95%. Does it mean
that we can port the algorithm into a real verification system?
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TABLE III
COMPARISON OF ERROR IN THE LIVDET 2011 DATASETS

Algorithms Biometrika Italdata Digital Sagem Mean Std
PCA without DR 2.45 9.65 2.65 3.4 4.76 3.32

PCA with DR 3.5 7.15 2.6 3 4.55 2.73
RP combine 5.15 10.9 3.2 6.4 6.41 3.27
MSLBP1 [26] 7.3 14.8 2.5 5.3 7.48 5.27
MSLBP2 [26] 10.6 12.6 6.7 5.6 8.88 3.28

BSIF [27] 6.8 13.65 3.5 4.86 7.20 4.51
LBP [28] 11 19 10.6 8.35 12.24 4.66
LPQ [24] 14.7 14.4 12.0 8.0 12.27 3.10

LPQ+LBP [25] 10.4 13.2 8.0 5.3 9.23 3.37

Unfortunately, the high performance of the algorithm is
based on the fact that we have already know the material
and the manufacture technique of spoof fingerprint, which
is unwarrantable in a real-world system. In fact, what we
have been studying is a recognition problem, not liveness
“detection”. The fingerprint liveness detection is actually a
one-class classification problem. We did a experiment on
executing the one-class SVM algorithm on the live training
dataset and test the performance in both live and spoof testing
dataset. The classification rate is 57%, 55.6%, 62.75% and
69.25% respectively on the four datasets. Obviously, they are
far from practical for a real-world application.

Mercifully, there are not too much materials competent
for making spoof fingers. Since the main difficulty of one-
class classification problem is the determination of the bound
of the live and spoof fingerprints, we can use the spoof
datasets which is already known to help confirming the bound.
If we collect the materials and manufacture techniques as
many as we can, the bound will be much clearer. Thanks to
the organizers of the LivDet competition, fake fingers made
by six different materials are utilized to collect fingerprint
images (each dataset has five of them). We have done another
experiment to determine the generalization performance of
new materials. Similar with the experiment made in [26], we
select four out of five materials in training set (1800 images) to
train the model and test the accuracy rate of the remaining one
in testing set (200 images). The result is shown in Table IV
compared with the model trained with the whole training data
(2000 images). As we could see in the table, the performances
decrease rapidly except for only a few of them.

The algorithm is still far from solving the problem once
and for all. As a Chinese proverb says, ’while the priest
climbs a post, the devil climbs ten’, we should not always
follow the crackers’ step. More methods, no matter algorithm-
based, device-based or combined ones, should be explored to
break this situation. Nonetheless, our proposed algorithm can
still confront the already-known materials and techniques of
making fake fingers. It would be practical if and only if the
developers kept updating the model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an simple but powerful data-
driven algorithm to learn a filter bank which is satisfied

with fingerprint image liveness classification. Besides, we
presented a series of techniques, such as soft background
filtering, normalization and the high dimension strategy, which
are of benefit to the performance. Our algorithm outperforms
the state-of-the-art approaches with a huge leap on all the
four datasets in LivDet2011. Since our algorithm is purely
software-based, it is very convenient to port it into the present
fingerprint verification systems.

However, there are still many works to do. Firstly, since
the liveness detection is a classification problem, a supervised
learning or supervised fine-tuning algorithm may be a better
choice. Secondly, a more powerful background noise filtering
method may promote the performance further. Finally, our
dimension reduction algorithm need to be improved. A single
component should be a positive linear combination of a small
subset of the high dimensional feature, while the components
obtained by PCA always cover all the dimensions. An effi-
cient sparse linear dimension reduction algorithm need to be
exploited for the high dimensional data.
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